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ABSTRACT
Efficiently serving embedding-based recommendation (EMR)
models remains a significant challenge due to their increas-
ingly large memory requirements. Today’s practice splits
the model across many monolithic servers, where a mix of
GPUs, CPUs, and DRAM is provisioned in fixed proportions.
This approach leads to suboptimal resource utilization and
increased costs. Disaggregating embedding operations from
neural network inference is a promising solution but raises
novel networking challenges. In this paper, we discuss the
design of FlexEMR for optimized EMR disaggregation. Flex-
EMR proposes two sets of techniques to tackle the network-
ing challenges: Leveraging the temporal and spatial locality
of embedding lookups to reduce data movement over the
network and designing an optimized multi-threaded RDMA
engine for concurrent lookup subrequests. We outline the de-
sign space for each technique and present initial results from
our early prototype.

1 INTRODUCTION
Embedding-based Recommendation (EMR) models, widely
used in e-commerce, search engines, and short video ser-
vices, dominate AI inference cycles in production datacenters,
such as those at Meta [12, 28]. They process user queries
using both continuous and categorical features, transforming
categorical features into dense vectors via embedding table
lookups, and finally, combining them with the continuous
features for neural network (NN) scoring.

Serving EMR models at scale leads to pressing memory
requirements [32] as embedding tables can grow to terabytes
in size, accounting for over 99% of model parameters [4]. In
practice, we need to partition an EMR model and distribute it
across multiple monolithic servers with a mix of GPUs, CPUs,
and DRAM [28, 33, 45, 54]. On a specific server, existing
advances propose to decouple the embedding lookup from the
NN computation and use DRAM for embedding store [30].
Recent work [45] further enhances this approach by employ-
ing an embedding cache on GPUs to optimize lookup perfor-
mance. However, this monolithic approach has limitations in
scalability and total cost of ownership (TCO) in practice. Rec-
ommendation workloads need a mix of resources—memory
for embedding store and GPUs for NN computation, and this
mixture varies across models and evolves over time. Mono-
lithic servers that provision resources in a fixed portion is

hard to achieve both performance and cost efficiency. Recent
studies show that it can lead to idle resources and wasted
costs of up to 23.1% [24].

A promising approach to achieve performant and cost-
efficient large EMR model serving is to disaggregate embed-
ding storage and NN computation into independent servers.
Specifically, using CPU-based servers to store embedding
tables in memory while utilizing GPU nodes for NN compu-
tations. These components are interconnected via high-speed
networks, such as remote direct memory access (RDMA)
[1, 9, 40]. This decouples the memory and GPU resources
and allows them to scale independently, improving the total
resource efficiency and reducing the TCO. Disaggregation
also increases system robustness, as failures are isolated to
individual components.

However, disaggregating EMR model serving raises novel
networking challenges. First, remote embedding lookup in-
volves extensive data transmission over the network. For ex-
ample, an 8-byte categorical feature index could generate a
returned embedding vector with hundreds or even thousands
of float values [37, 55]. Worse still, each lookup needs to
query multiple such indices, and each batch contains up to
thousands of lookups [18, 33]. This can be efficiently handled
by local GPU memory with high memory bandwidth in a
monolithic design. However, decoupling embedding storage
and computation shifts this pressure to the network, with a
much smaller bandwidth, potentially causing network bot-
tlenecks. On the other hand, intensive data transmission im-
poses stringent performance requirements on the network
layer. Unfortunately, today’s RDMA systems [7, 48] are not
designed for EMR disaggregation. For instance, the single-
thread RDMA I/O models that are commonly used in regular
applications [5, 22] will suffer from high software queuing
latency for EMR serving. The recent design on disaggregated
EMR systems [24] mainly focuses on resource provisioning
but overlooks the above networking challenges.

In this paper, we design an optimized disaggregated EMR
system called FlexEMR. FlexEMR optimizes the disaggrega-
tion by proposing two classes of techniques to tackle the chal-
lenges discussed above. The first set of techniques explores
the temporal and spatial locality of embedding lookup. While
existing works [45] implement embedding caches on GPUs to
leverage temporal locality, we observe that such caches could
compete with NN computation for limited GPU memory, and
propose mechanisms to dynamically adjust caching strategy
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Figure 1: A representative EMR model—Deep Learning
Recommendation Model (DLRM).

to avoid contention. Given that multiple lookup subrequests
could point to the same embedding server, we further inves-
tigate the benefit of spatial locality. we design a hierarchical
embedding pooling strategy that partially offloads pooling
operations into the embedding servers, utilizing their avail-
able CPU cycles. This reduces embedding movement in the
network and mitigate pressure on the rankers, while putting
CPU resources to good use.

The second set of techniques aims at optimizing the RDMA
I/O engines used for remote embedding lookups. First, we
explore the design of a contention-free multi-threaded RDMA
service, allowing concurrent RDMA threads to post lookup
requests to different embedding servers in parallel. This ap-
proach significantly reduces queuing latency compared to
commonly used single-threaded RDMA solutions. Addition-
ally, we handle skewed access patterns by periodically mi-
grating connections across embedding servers, and deploy
credit-based flow control to mitigate response congestions.
These optimizations collectively enhance the performance of
remote embedding lookups in FlexEMR.

Working together, these two sets of techniques enable an
efficient, flexible, and cost effective EMR model serving
architecture. We validate the key ideas of FlexEMR using
micro-benchmarks and present preliminary results in §4.

2 OVERVIEW
In this section, we provide background on EMR model serv-
ing, describe the motivation and challenges for disaggregated
EMR serving, and present an overview of our solutions.

2.1 Background: EMR models
An EMR model handles two types of input features: cate-
gorical features (sparse) representing discrete categories or
groups and continuous features (dense) representing mea-
surements or quantities that are continuous in nature [33].
For example, in a video recommendation system, categorical
features could include video IDs, genres, or user IDs, while
continuous features could include user age or watch time.
The categorical features often have very high cardinality, as
each feature can consist of millions of instances (e.g., nu-
merous specific IDs for users in feature “user IDs”). EMR

models convert these high-dimensional categorical features
into dense vector representations via embedding tables.

Figure 1 illustrates the key components and workflow of
a representative EMR model. It takes candidate items as in-
put, including both categorical and continuous features from
upstream. For those accessed instances (e.g., IDs) in a batch,
EMR retrieves their associated embeddings (dense vectors),
which will be aggregated into a single fixed-size embedding
vector through pooling operations such as sum or average.
Meanwhile, the continuous features are processed by a bottom
neural network (bottom NN) which is typically a multilayer
perceptron (MLP) to generate high-dimensional dense vectors.
The feature interaction process combines the dense vectors
from categorical and continuous input features through opera-
tions such as element-wise multiplication or concatenation.
The combined result is fed into a top neural network (top NN)
to compute user-item scores for top-k ranking. The items with
the highest scores are presented to the user.

2.2 Motivation: Disaggregated EMR serving
State-of-the-art EMR models consist of hundreds of sparse
features, each associated with an embedding table with poten-
tially millions of embedding rows [10, 34]. Indeed, production-
level EMR models could have TB-level embedding tables
(e.g., Meta uses 50TB DLRM model [32]).

The large-size embeddings have presented significant chal-
lenges for EMR serving because they cannot be stored on
a single GPU. Therefore, EMR embeddings are often par-
titioned and scattered across multiple servers, each server
has a combination of GPUs, CPUs, and DRAM. Consider-
ing that EMR workloads require two distinct types of re-
sources—large memory for embedding storage and GPUs for
NN computation—researchers propose decoupling them for
better flexibility. Specifically, this approach leverages DRAM
and CPUs for embedding storage and lookup, while utilizing
GPUs on the same servers for NN computation. As a fur-
ther improvement, an embedding cache is employed in GPU
memory to cache the “hot” entries to optimize the lookup
performance [45].

The embedding-NN decoupling enables more flexible EMR
serving, but doing that on monolithic servers has several limi-
tations. Monolithic servers provision GPU, CPU, and DRAM
resources in fixed proportions, but the demands for these re-
sources by EMR workloads can evolve across models and
change over time due to varied recommendation workloads.
Scaling up the whole server for the most demanding resource
or the peak workload will lead to low resource utilization
and waste of costs. A recent study [24] has found that fixed
resource provision on monolithic servers can result in wasted
costs of up to 23.1%. Therefore, more resource- and cost-
efficient EMR serving are urgently needed.

Building upon the trend of disaggregation in datacenters [6,
13], a promising solution is to fully disaggregate the embed-
ding layer and dense NN compute into network-interconnected
CPU embedding servers and GPUs (rankers), respectively.
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Figure 2: Embedding layer dominates EMR serving.

The rankers access embeddings stored on embedding servers
over high-speed networks, such as RDMA. This new EMR
serving paradigm offers multifold benefits including: (1) Flex-
ible scalability. It allows each component to scale indepen-
dently, e.g., allocating additional memory to accommodate
larger embedding tables. (2) Cost efficiency. It allows rankers
to multiplex many embeddings streamed from CPU embed-
ding servers, greatly improving resource utilization and reduc-
ing the number of rankers needed for deploying EMR models.
(3) Improved robustness. It enhances system robustness be-
cause the embedding operations and NN computation failures
can be perfectly isolated.

EMR disaggregation is an emerging direction that remains
underexplored. The most closely related work, DisaggRec [24],
shares similar disaggregation concepts with us but primar-
ily focuses on resource provisioning and scheduling post-
disaggregation. However, EMR disaggregation introduces
several networking challenges, as we will discuss next, that
have not yet been thoroughly studied.

2.3 Key research challenges
Disaggregated EMR serving involves a large volume of data
movements over the network. Typically, given some cate-
gorical feature indices as input, the ranker first fetches all
corresponding embedding vectors from remote embedding
servers and then performs feature pooling operations. As a re-
sult, the network bandwidth between embedding servers and
rankers becomes a major bottleneck (as shown in Figure 2),
presenting several domain-specific challenges.
(1) Contention in GPU memory. To reduce data movement
over the network, existing works [17, 21, 23, 25, 27, 29, 46,
47] attempt to cache frequently accessed embedding entries
in GPU memory. However, we observe that embedding cache
is far from a perfect solution. Using precious GPU memory
for caching could significantly reduce serving throughput,
especially when the NN model size and request batch size are
large. Essentially, NN inference also requires a large amount
of GPU memory, and the existing caching strategy could
cause serious resource contention between the two tasks.
(2) Large-scale fan-out pattern. Remote embedding lookup
generates large-scale fan-out subrequests. For example, an
8-byte categorical feature index could generate a returned
embedding vector with hundreds or even thousands of bytes
in dimension size. Moreover, each lookup needs to query
multiple such indices, and each batch contains up to thousands
of lookups. Unlike local memory, the network bandwidth is
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Figure 3: FlexEMR architecture overview.
significantly lower. Hence, issuing hundreds or thousands of
concurrent batched embedding lookups can lead to severe
network contention and degraded performance.
(3) RDMA engine efficiency. RDMA is commonly used
for remote data access. Most existing RDMA applications
employ single-threaded RDMA I/O models, which send out
RDMA read requests to different target machines using one
thread. This leads to extended queuing latency in our sce-
nario. We need to design a more efficient RDMA I/O engine
capable of handling concurrent embedding lookup requests
and results, while effectively re-balancing skewed workload
patterns across distributed embedding servers.

2.4 Our solution: FlexEMR
In this paper, we propose FlexEMR—an EMR serving system
that aims at addressing the aforementioned challenges. Fig-
ure 3 illustrates the envisioned system architecture. At a high
level, the rankers initiate embedding lookups. Each lookup
contains multiple subrequests, which firstly go through an
adaptive embedding cache on rankers serving as a lookup fast
path for reduced latency. The requests are then sent to embed-
ding servers via a set of optimized RDMA engines. Once the
corresponding embedding vectors are found, FlexEMR initi-
ates a hierarchical pooling process to retrieve results without
causing network contentions.

Our design is primarily based on two sets of techniques.
First, we reduce embedding movement over the network by
exploiting temporal and spatial locality across embedding
lookups and subrequests. Temporal locality means that (i)
a non-negligible portion of embeddings (e.g., 10%∼15%)
are the most frequently accessed in a period (i.e. hot embed-
dings [10, 11, 46]), and (ii) some subrequests often appear
together in the same lookup (i.e. embedding co-occurrence
[49]). Existing work has leveraged temporal locality to design
embedding caches on GPUs, but we argue that the caching
design should be dynamically adjusted to avoid GPU memory
contention. Spatial locality means that multiple embedding
tables/shards often co-locate in the same embedding server,
so many subrequests in a lookup will be sent to the same
destinations. As such, we propose to push-down lightweight
pooling operations onto embedding servers. This leverages
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Figure 4: Hierarchical EMB pooling. Pooling computa-
tion handled solely by the ranker can cause network con-
tention (4a). Performing pooling hierarchically, sending
only the intermediate results to the ranker can reduce
network traffic (4b).
the fact that embedding servers also contain CPU resources,
but they are under-utilized at runtime [19].

Second, we improve the networking layer of FlexEMR
serving with a fleet of RDMA optimizations. Specifically, we
propose to use multi-thread RDMA for embedding lookups.
It allows multiple RDMA IO threads to concurrently handle
lookups into different embedding servers, thus reducing the
queuing latency. We address the RNIC resource contention
problem across concurrent RDMA requests using a mapping-
aware RDMA IO engine, and envision a load-balanced live
migration mechanism to overcome the problem of skewed
requests across embedding servers. A new credit-based flow
control mechanism is further implemented to avoid head-of-
line blocking caused by traffic bursts.

3 FLEXEMR DESIGN
In this section, we outline a potential system design and
optimizations. We first highlight the design of an adaptive
caching mechanism and a hierarchical EMB pooling architec-
ture in section 3.1. Next, in section 3.2, we discuss how multi-
threaded RDMA further optimizes the embedding lookup.

3.1 Locality-enhanced disaggregation
3.1.1 Adaptive EMB caching. A common practice to re-
duce embedding lookup latency is to leverage the temporal
locality across requests and cache “hot” lookup or pooling
results in GPU memory [45]. However, because the embed-
ding caches share GPU memory with NN computation, an
enlarged cache inevitably leads to a smaller batch size for NN
computing due to GPU memory contention, thereby degrad-
ing overall throughput. In this work, we explore an approach
to adaptively adjust the size of cache: when the system is
overloaded, FlexEMR reduces cache size automatically to
preserve overall throughput; otherwise, it expands the cache
to improve latency.
Tracing temporal dynamics. The first step towards an adap-
tive caching strategy is to capture the workload temporal
dynamics (Figure 5). In reality, the ranker often uses a task
queue to receive batches of requests from upstream, then

feeds them into downstream EMR models. FlexEMR could
monitor the size of these batches, then apply a sliding window
algorithm to determine whether the system is under high load.
Adjusting cache size. Once a decision is made to enlarge or
shrink cache size, we need to consider how to enforce these
actions accordingly. This involves two sub-tasks: Firstly, we
need to determine the updated cache size. Our observation
here is that, given the incoming batch size and the EMR
model architecture, it is possible to build a model to estimate
the memory size required by NN computation. The ideal
cache size is the difference between GPU memory capacity
and the parts reserved for NN. The second task is to swap
embeddings into or out of GPU memory For the swap in
action, FlexEMR could initiate RDMA reads from the ranker
to asynchronously fetch the hot embeddings from embedding
servers in a transparent manner. For the swap out action,
FlexEMR should remove part of embedding cache lines based
on a LRU algorithm, and free up the corresponding GPU
memory.

3.1.2 Hierarchical EMB pooling. Apart from temporal
locality, spatial locality is also prevalent in EMR serving sys-
tems. In a disaggregated architecture, embedding tables are
placed onto a set of remote embedding servers. Given an em-
bedding lookup request from the ranker, a typical workflow
is shown in Figure 4(a): First, the ranker sends sub-requests
to remote embedding servers and asks them to return cor-
responding embedding vectors. The ranker then aggregates
these results through pooling operations. This communication
leads to extensive embedding movement over the network
and increased latency.
Hierarchical pooling leveraging spatial locality. We seek
to reduce the embedding movements between the ranker and
embedding servers for higher throughput under bounded la-
tency. Our finding here is that the CPUs in embedding servers
could be utilized to perform partial pooling operations. If
an embedding server contains multiple required vectors (i.e.
spatial locality), then it could aggregate them first before send-
ing to the ranker. Motivated by this finding, we envision a
hierarchical pooling architecture, as shown in 4(b). For each
embedding lookup, FlexEMR first invokes embedding server
CPUs to perform partial pooling whenever possible, then asks
the ranker to retrieve their outputs and perform global pooling
to obtain the final results. Unlike existing works [57], Flex-
EMR is the first to explore parallel operator push-downs (i.e.,
pushing pooling operations down to embedding servers). This
design could potentially generalize to other workloads with
large-scale fan-out patterns.
Routing table for identifying co-located embeddings. An
important question here is how to identify the embedding spa-
tial locality among embedding servers—i.e., given as input a
set of sparse feature indices, we need to identify which indices
are co-located at where. A naïve solution is to maintain a rout-
ing table storing the <feature indice, dest embedding server>
mapping pairs. It then queries all corresponding embedding
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servers and aggregates the sparse feature indices into multi-
ple groups depending on their embedding servers. However,
this leads to huge memory footprints due to numerous sparse
feature spaces. We observe a large embedding table is often
partitioned into multiple shards in a row-wise manner, and
each shard corresponds to an embedding range containing
start and end indices. Based on this, we envision a range-
based routing table in ranker where we store <(start index,
end index), dest embedding server> pairs for each embedding
shard. For a list of sparse indices, FlexEMR only needs to
use the range to which each indice belongs to get the target
embedding server efficiently.

3.2 EMB lookup with Multi-threaded RDMA
We next discuss how to optimize the RDMA I/O engine for re-
mote embedding lookup. Given a batch of embedding lookup
requests, each containing a large amount of fan-out subre-
quests, rankers in FlexEMR require an efficient RDMA I/O
engine to forward subrequests to remote embedding servers.
Since the completion time of an embedding lookup is domi-
nated by the slowest subrequest, the overall pipeline is very
sensitive to tail latency. The single-threaded RDMA IO model
used for most existing RDMA applications [5] becomes a ma-
jor bottleneck, since it incurs high queuing latency overhead
between the embedding and transport layers.

A promising solution is to use multi-threaded RDMA, where
RDMA connections to embedding servers are assigned to mul-
tiple I/O threads, and embedding subrequests are distributed
to these connections according to corresponding destinations.
However, naïvely using multi-threaded RDMA introduces
non-negligible contentions due to limited RNIC parallelism
resources (e.g., user access regions [43]): Figure 8 (left) shows
that it can lead to up to 62% throughput drop in our mi-
crobenchmark.
Contention-free multi-threaded embedding lookup. To
understand the root cause of contentions under concurrent
lookup subrequests, we delve deep into the architecture of

multi-threaded RDMA. As shown in Figure 6, we find that
each RDMA engine contains a dedicated I/O thread, and
each thread encompasses multiple RDMA connections. The
RNIC parallelism units are allocated to each newly created
connection in a round-robin manner, resulting in a one-to-
many mapping between RDMA parallelism units and connec-
tions. However, the I/O threads for remote embedding lookup
are not aware of such mappings, thereby enforcing multiple
RDMA connections belonging to different I/O threads to ac-
cess the same parallelism unit simultaneously. To coordinate
different I/O threads, each parallelism unit must implement a
complex locking mechanism, which could introduce signifi-
cant performance overhead.

To solve this problem, we envision a mapping-aware multi-
threaded RDMA engine, capable of transparently generating
one-to-one mapping between I/O threads and RNIC paral-
lelism units, as shown in Figure 6 (right). The key-enabling
technique is the resource domain feature provided by RDMA
[2, 31], which exposes the mapping between connections and
RNIC parallelism units to the application layer. As such, Flex-
EMR could ensure that all connections assigned to the same
parallelism unit are allocated to the same RDMA engine, thus
preventing contention from concurrent threads. Essentially,
in the cluster initialization stage, FlexEMR firstly creates
RDMA connections between embedding servers and rankers,
then identifies their resource domains. Since there is a static
mapping between the resource domain and parallelism unit,
FlexEMR could subsequently aggregate connections into dif-
ferent RDMA engines according to the resource domain, so
that each RDMA engine points to a dedicated parallelism
unit.
Live connection migratation among RDMA engines. An-
other common problem in practice is skewed subrequest
patterns. Connections to different embedding servers might
experience vastly different utilization rate, which leads to
imbalanced loads among RDMA engines. Since an RDMA
engine can manage multiple connections used for different
embedding servers, a strawman solution is to live-migrate
connections in overloaded engines to under-utilized engines:
Periodically, FlexEMR traces the number of queued subre-
quests in each connection. When a connection becomes over-
loaded, FlexEMR selects the least loaded RDMA engine and
initiate the migration process. However, this workflow brings
back the RDMA multi-thread contention problem, because
the migrated connection still points to the old parallelism unit.
FlexEMR aims at a live migration strategy without RDMA
contention concerns. The key idea is to re-associate the mi-
grated connection with the resource domain used by the new
RDMA engine. Notably, FlexEMR detaches the connection
from the old domain, and then attaches it to the resource
domain of the new one.
Fast credit-based flow control with RDMA QoS. FlexEMR
pipelines pooling computation and remote embedding lookup
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to further reduce serving latency. To do that, FlexEMR in-
troduces a per-connection task queue between remote em-
bedding servers and RDMA engines, so that the responses
(i.e., embedding vectors) from embedding servers can be
pushed into their respective queues asynchronously. However,
without careful flow control, concurrent subrequests could re-
sult in response bursts, which might overflow corresponding
task queues and drastically increase tail latency. A straw-
man solution is to leverage existing credit-based flow control
[15, 44]—specifically, the ranker controls the size of each
task queues via credits and proactively piggybacks the cred-
its in lookup requests. However, since these credit messages
share channels with regular lookup messages, the latter could
easily introduce head-of-line blocking and delay reception
of the former. As a result, embedding servers won’t be able
to adjust sending rate of responses in time. To mitigate such
head-of-line blocking, we envision a fast credit control chan-
nel with higher priority. By leveraging the hardware feature of
connection-level quality of service (QoS) offered by RDMA,
FlexEMR can create a dedicated RDMA connection with a
higher service level for each <ranker, embedding server>
pair. At runtime, FlexEMR can use such connections as fast
path to transfer credits timely even under high load pressure.

4 PRELIMINARY RESULTS
Even though FlexEMR is still work-in-progress, we showcase
initial evidence around its major components, including adap-
tive embedding caching (§3.1.1) and multi-threaded RDMA
embedding lookup (§3.2). We use the popular MLPerf frame-
work [36] and a set of production-scale embedding lookup
traces released by Meta [37] to synthesize inference work-
loads. Our testbed includes two interconnected Intel Xeon
servers each equipped with 32 CPU cores, 128GB mem-
ory, and a 100Gbps Mellanox RDMA NIC. One of them
is equipped with a Nvidia A100 GPU with 80GB of memory.

Naïve caching leads to GPU contentions. To understand the
benefit of adaptive EMB caching, we analyze a pure GPU
caching-based solution on a representative RMC2 model [10,
19]. For the GPU caching baseline, we vary the size of EMB
caches and observe the changes on supported batch sizes.
As Figure 7 shows, as we increase the GPU cache size, the
caching-based solution has to settle with smaller batch size
due to contention on GPU memory capacity, resulting in
decreased inference throughput and wasted GPU compute cy-
cles. FlexEMR on the other hand aims to achieve the highest
batch size through an adaptive embedding caches, as proposed
in §3.1.1, mitigating memory contention in most scenarios.
FlexEMR outperforms naïve RDMA-based embedding
lookup in efficiency. Next, we compare the lookup perfor-
mance of a naïve multi-threaded RDMA baseline against our
FlexEMR prototype. As Figure 8 illustrates, with mapping
aware multi-threading, FlexEMR achieves higher throughput
than baseline by up to 2.3x. Moreover, FlexEMR achieves
35% lower latency on credits transmission, which further
reduces possible congestion between rankers and embed-
ding servers. This demonstrates the importance of an efficient
multi-threaded RDMA engine (§3.2).

5 RELATED WORK
Many existing works treat EMR as generic deep learning mod-
els and adopt GPU-centric approaches for their deployment
[28, 33, 45, 54], leading to under-utilized GPU resources.
Recent projects apply a variety of caching mechanism[17,
21, 23, 25, 27, 29, 46, 47] to speed up embedding lookups.
However, these solutions suffer from low cache hit rate in
production environments [19]. Specialized hardware such as
FPGAs has also been explored to enhance recommendation
systems [14, 20, 53], but we strive for a generic solution
with commodity hardware. Compression [3, 8, 41, 50] and
sharding [38, 39, 42, 54, 56] are common optimizations to
embedding table lookup. These works are complementary to
ours, as the proposed techniques can be integrated seamlessly
into FlexEMR for further improved performance. DisaggRec
[24] proposed a similar disaggregated memory system. How-
ever, the resource distribution is fixed and determined through
an exhaustive search. This approach introduces overhead and
fails to capture serving dynamics.

6 CONCLUSION & FUTURE WORK
Embedding-based recommendation (EMR) model serving
consumes the majority of AI inference cycles in production
datacenters due to its unique embedding-dominated charac-
teristics and stringent service-level objectives. However, prior
serving systems for EMR models struggle to achieve high
performance at low cost. We propose FlexEMR, a fast and effi-
cient system that disaggregates embedding table lookups from
NN computation. FlexEMR uses a set of locality-enhanced
optimizations atop a multi-threaded RDMA engine to ensure
performance and resource efficiency. We envision FlexEMR
to improve user experience of Internet-scale recommendation
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services while driving down costs for their providers. Further-
more, we believe this paradigm can benefit other ML work-
loads, including large language models (LLM) [26, 52], mul-
timodal models [16], and mixture-of-expert (MoE) [35, 51],
which we will also investigate in future works.
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